

YJC-150C

变压器油温表校验仪

— -20°C~150°C —

说明书 (手册)

武汉卓亚电力自动化有限责任公司

WUHAN ZHUOYA TECH AUTOMATION CO., LTD

WEB : www.power-kva.com PHONE : 027-65523062

声明

✓ ZYTECH 卓亚电力

本使用说明书所提及的商标与名称,均属于其合法注册公司所有。本说明书受著作权保护,所撰写的内容均为卓亚电力公司所有。本使用说明书所提及的产品规格或相关参数,未经许可,任何单位或个人不得擅自仿制、复制、修改、传播或出版。本使用说明书所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。可随时查阅官方网站: http://www.power-kva.com。

本使用说明书仅作为产品使用指导,所有陈述、信息等均不构成任何形式的担保。

服务承诺 --

感谢您使用卓亚电力公司的产品。在您初次使用该仪器前,以便正确使用仪器,请您详细阅 读此使用说明书,充分发挥其功能,并确保仪器及人身安全。

我们深信优质、系统、全面、快捷的服务是事业发展的基础。经过多年的不断探索和进取, 我们形成了"重质量、重客户"的服务理念。以更好的产品质量,更完善的售后服务,全力 打造技术领先、质量领先、服务领先的电力试验产品品牌企业。为客户提供满意的售前、售 中及售后服务!

安全要求

为了避免可能发生的危险,请阅读下列安全注意事项。

本产品请使用我公司标配的附件。

防止火灾或电击危险,确保人生安全。在使用本产品进行试验之前,请务必详细阅读产品使用说明书,按照产品规定试验环境和参数标准进行试验。

使用产品配套的保险丝。只可使用符合本产品规定类型和额定值的保险丝。产品输入输出端子、测试柱等均有可能带电压,试验过程中在插拔测试线、电源插座时,会产生电火花,请

务必注意人身安全!请勿在仪器无前(后)盖板的情况下操作仪器/仪表。

试验前,为了防止电击,接地导体必须与真实的接地线相连,确保产品正确接地。试验中,测试导线与带电端子连接时,请勿随意连接或断开测试导线。试验完成后,按照操作说明关闭仪器,断开电源,将仪器按要求妥善管理。

若产品有损坏或者有故障时, 切勿继续操作,请断开电源后妥善保存仪器,并与卓亚电力 公司售后服务部联系,我们的专业技术人员乐于为您服务。

请严格按照说明书及规范的试验操作流程使用本产品。 请勿在潮湿环境下使用仪器。 请勿在易爆环境中使用仪器(防爆产品除外)。 请保持产品表面清洁,干燥。 产品为精密仪器,在搬运中请保持向上并小心轻放。

联系方式

武汉卓亚电力自动化有限责任公司

WUHAN ZHUOYA TECH AUTOMATION CO., LTD

- 地址: 中国 · 湖北省武汉市东湖新技术开发区光谷大道 303 号
- 总机: 027-65523062
- 网站: www.power-kva.com
- 邮箱: zykva@foxmail.com

目录

1	安全注意事项	1
	1.1 安全信息	1
2	简介	2
	2.1 主要特色	2
3	快速参考	2
	3.1 主界面	2
	3.2 启动干体炉	3
	3.3 开始使用	4
4	操作说明	4
	4.1 菜单	5
	4.2 系统设置	5
	4.3 输出参数设置	6
	4.4 控温设置	7
	4.5 温度校正模式	8
	4.6 温度修正	8
	4.7 文件记录	9
	4.8 控温数据	10
	4.9 时间设置	12
	4.10 系统信息	13
5	技术指标	13
6	一般技术规格:	14
7	保养与维护	14
	1.一般的保养和维修	14
	2.更换保险丝管	14

1 注意事项

1.1 安全信息

请务必按照本手册所述事项使用本仪器,否则仪器所带的保护功能可能受到影响。参见 以下警告与注意章节中的安全信息。

下列定义适用于术语"警告"与"注意"。

"警告"表明可能会对使用者造成危害的条件和行动。

"注意"表明可能会损坏所用仪器的条件和行动。

1.1.1 警告

为避免人身伤害,请遵守下列指导原则。

概述

切勿 把本仪器用于除校准工作以外的其他应用。仪器设计用于温度校准,任何其他用 途都可能会对使用者造成难以预计的伤害。

切勿 把仪器放在柜子或其他物体下面。顶部需要留出空间,以便安全而轻松地插入和 取出探头。

接地 是必须的, 接入干体炉的电源必须可靠接地。

在高温下长时间使用本仪器时需要特别注意,高温运行时不建议无人监控,可能会有安 全问题。

除了竖放,禁止用其他任何方位操作仪器。倾斜仪器或者把仪器靠边倒放可能会造成火 灾事件。

注意烫伤危险

切勿 在仪器工作时用手触摸恒温块。

切勿 在可燃物质附近使用仪器。

在高温下长时间使用本仪器时需要引起注意:

在恒温块温度高于100℃时,屏幕将显示高温警示图标和文字。无论仪器是否在工作, 请勿取出插件(被检传感器),以免引起人身伤害或火灾。

切勿在温度高于 100℃时关闭仪器。这样做会引发危险情况。选择低于 100℃的设定点, 并停止输出,在关闭仪器之前让其冷却。

2 产品简介

变压器油温表校验仪(低温干体炉)易于携带、使用方便,易于快速可靠的温度校准, 广泛应用于机械、化工、食品、药品等行业。

当前国内现有现场用干体式校验炉普遍存在降温慢、恒温慢的缺点,导致使用者进行校 准时需要很长时间。本公司最新一代干井炉采用了国际上最先进的降温原理设计,具备降温 快、恒温快的特点,大大提高了现有的校准效率。

通过高精度传感器测温和可靠的控温电路,确保了精度高于国内其他厂家的水平,技术 达到国际标准:全球首创的触摸式操作,使用简单快捷。

主要特色 2.1

体积小,重量轻,携带方便;

多种类型的插入管,可满足不同尺寸、数量的传感器测试及校准。且可根据用户的特殊需求 定制:

水平温场、垂直温场好:

被检传感器插入深度同行业领先;

5.0 寸电容触摸屏, 16 位真彩色 RGB 显示, 全触摸操作, 使用直观醒目; 快速降温,设置方便,控温稳定性好; 恒温块可更换;

带有负载短路、负载断路、传感器保护等功能。

3 快速参考

主界面 3.1

主界面: 分为数显模式与曲线显示模式, 如图 3.1.1 和图 3.1.2 所示。

图 3.1.1 数显模式主界面

- ①. PT100 电阻值: 实时刷新干体炉内部控温热电阻的电阻值;
- 高温警示:当恒温块温度超过 100℃时,将显示"注意高温"和警示图标,并且文字闪烁;
- ③. 实时曲线:从数显模式切至实时曲线显示模式;
- ④. 主输出指示灯:指示加热(或制冷)模块是否在工作,灰色未工作,红色正在工作;
- ⑤. 日期与时间: 实时刷新当前日期与时间;
- ⑥. 加热按键: 当设置的目标温度值明显高于环境温度时, 点按启动加热;
- ⑦. 制冷按键: 当设置的目标温度值明显低于环境温度时, 点按启动制冷;
- ⑧. 停止按键: 当前正在执行加热(或制冷)操作时,点按暂停加热(或制冷);
- ⑨. 菜单按键: 点按进入菜单界面;
- ⑩. 设置温度: 点按进入设置温度界面,设置范围-20(-30)~150℃;
 - . 测量温度: 实时刷新干体炉内部控温热电阻的测量温度,即干体炉的温场温度;
 - . 温度波动: 实时刷新测量温度在一段时间内最大值与最小值的差值;
 - . 控温时间:从干体炉启动加热(或制冷)开始计时,到停止执行加热(或制冷)结 束计时,实时刷新当前控温过程的消耗时间。

图 3.1.2 曲线模式主界面

一个完整的曲线图画面最多可显示 600 个温度点,温度点以 3 秒/次的频率进行刷新, 打满屏幕后曲线将呈滚动显示。

①. 运行时间:实时刷新启动干体炉的时间;

②. 数显模式: 点按从实时曲线显示模式切至数显模式。

3.2 启动干体炉

1. 连接 AC 电源

使用附件提供的电源线将干体炉连接至 220V 交流电源。

2. 打开开关

打开机箱正面的电源开关。

3. 若仪器没有正常启动,请按照下面的步骤进行检查:

- 1) 检查电源线是否接触良好。
- 如经检查无误后, 仪器仍未启动, 请检查电源保险丝是否已熔断。如有必要, 请更 换保险丝。
- 3) 若经上述检查无误后, 仪器仍未启动, 请与相关部门联系。

3.3 开始使用

按如下步骤即可快速使用:

1. 设置目标温度

如图 3.1.1 所示,在主界面下点击设置温度输入框,弹出设置温度窗口,输入目标温度, 点按"确认"按键,回到主界面,温度设置成功。

2. 加热/制冷工作

点按主界面上"加热"/"制冷"按键(请根据当前环境温度选择"加热"/"制冷")。 按键呈现按下效果,仪器开始工作,同时主输出指示等将以特定的时间间隔闪烁。

3. 停止工作

点按主界面"停止"按键,仪器输出将停止工作。

4 操作说明

系统功能:系统功能框架图如图 4.1 所示。

图 4.1 界面操作框架图

4.1 菜单

图 4.2 菜单界面

菜单界面主要分为8个功能模块,分别是系统设置,输出参数设置,控温设置,温度校 正,文件记录,控温数据,时间设置,系统信息,如图4.2所示。

4.2 系统设置

$\langle \rangle$	>>> 系统设置
语言	简体中文
温标	°C
分辨率	0. 01
温度报警上限	160
温度报警下限	-35
恢复默认 亮度	100%

图 4.3 系统设置界面

系统设置:用于干体炉一些常规项目的配置,包括语言、温标、显示分辨率、亮度、温度报警上限与温度报警下限,如图 4.3 所示。点按"恢复默认"按键,可将系统设置的配置信息恢复至出厂值状态。

1.语言设置

支持简体中文和 English 两种系统语言,点按屏幕相应区域进行设置;

2. 温标设置

支持摄氏度℃和华氏度℃两种系统温标,点按屏幕相应区域进行设置;

3. 分辨率设置

支持 0.01 和 0.001 两种系统分辨率, 点按屏幕相应区域进行设置;

4. 报警上限设置

用于设定上限报警点。当输出打开时,如果恒温块温度超过报警上限值,系统将弹出温度报警窗口,蜂鸣器鸣响,且输出将被强行关闭。设置范围为-45℃~160℃,且不能比报警下限值小;

5. 报警下限设置

用于设定下限报警点。当输出打开时,如果恒温块温度低于报警下限值,系统将给出提示信息。设置范围为-45℃~160℃,且不能比报警上限值大;

6. 屏幕亮度设置

百分比数值设置,共5个档位,分别是20%,40%,60%,80%,100%,点按"+/-" 按键调节亮度大小。

4.3 输出参数设置

图 4.4 输出参数设置界面

输出参数设置:系统在执行加热与制冷的控温过程中,采用 PID 控制方式控制干体炉温场温度。在该界面下,用户可自定义 PID 的各项输出参数以满足现场需求。出厂时,系统预置了一套 PID 参数,如图 4.4 所示。点按"恢复默认"按键,可将 PID 输出参数恢复至出厂值状态。

1. PID 周期

仪表的调节运算周期,单位为秒,设置范围: 1~100,系统预设为 3。该参数对调节品 质影响较大,合适的数值能完善地解决超调及振荡现象,同时获得较好的响应速度。建议在 预设值的基础上修改。

2. PID 比例系数

PID 中的比例系数 P, 单位为%, 设置范围: 1~9999, 系统预设为 300。比例系数决定

了比例带的大小。比例带越小,调节作用越强(相当于加大放大系数);相反,比例带越大, 调节作用越弱。建议在预设值的基础上修改。

3. PID 积分时间

PID 中的积分时间 I, 单位为 s, 设置范围: 1~9999, 系统预设为 53。积分时间决定了 积分作用强度。积分时间短则积分作用强, 消除静差的时间短, 但过强的积分作用可能会导 致温度稳定时出现较大幅度振荡。相反, 积分时间长则积分作用弱, 但消除静差的时间比较 长。建议在预设值的基础上修改。

4. PID 微分时间

PID 中的积分时间 D, 单位为 s, 设置范围: 1~9999, 系统预设为 14。微分时间决定了 微分作用强度。微分时间长则微分作用强, 对温度变化反应敏感, 可减少温度过冲。但过强 的微分作用可能会增大温度震荡幅度, 加长稳定时间。

5. 功率限制

仪表限定的主输出功率,单位为%,设置范围: 1~100,系统预设为 100。数值越大表示加热时输出功率越大,加热越快,但可能不利于加热模块的使用寿命。

注意:设置完成后点按"保存"按键,才会保存设置值,否则视为放弃修改。

4.4 控温设置

控温设置:用于作为系统对控温是否达到稳定状态的判定标准。如图 4.5 所示,以图中 参数为例,当测量温度到达设定温度±0.50℃的偏差以内,且波动度小于等于±0.02℃,持续3分钟,则系统判定控温稳定,此时用户可以采集被检传感器的测量数据。

系统判定控温达到稳定时,蜂鸣器响一声,主界面"测量温度"4 个字将呈绿色显示。

用户也可根据自身需求修改控温设置参数值,温度波动、目标偏差越小,稳定时间越大,则判定控温稳定的条件越苛刻,达到稳定所需时间也就越长,建议在预设值的基础上修改。

图 4.5 系统设置界面

1. 温度波动

测量温度在一段时间内的最大值与最小值的差值,用于反映测量温度的稳定性。

2. 目标偏差

测量温度与设置温度之差,用于反映测量温度与目标温度的偏差。

3. 稳定时间

测量温度在限定的温度波动与目标偏差之内所持续的时间。

注意:设置完成后点按"保存"按键,才会保存设置值,否则视为放弃修改。 注意:系统的控温稳定判定标准仅供参考。

4.5 温度校正模式

图 4.6 温度校正模式界面

温度校正选择:用于选择温度校正模式,包括线性校正模式和定点校正模式,如图 4.6 所示。

1. 线性校正

线性校正通过使用校准数据建立多个二元一次方程,来确保整个量程内的数据均准确可 靠。举例说明: 该模式下校正了温度点-20℃和-10℃,那么-20~-10℃之间的所有温度点都得 到了校正。

2. 定点校正

定点校正仅仅只修正固定设置温度点的误差,它在"定点校正表格"中的设定值和修正 值均可更改。举例说明,该模式下校正了温度点-20℃和-10℃,那么仅仅只有-20℃和-10℃ 两个温度点得到了校正,-20~-10℃之间的其它温度点均未被校正。

4.6 温度修正

温度修正:用于修正测量温度值。当主界面测量温度的精确度较差时,用户可通过温度修正界面进行修正。在温度校正模式界面下点按"线性校正表格"或"定点校正表格"按键,进入温度修正界面,如图 4.7 和 4.8 所示。

				_							
\checkmark		>>> 温度	€线性修正/℃	\langle)			>>	く温度	定点	修正/℃
设定值 修正值 设定值	修正值 设	殳定值 修正值	设定值 修正值	设定值	〔 修正值	设定值	修正值	设定值	修正值	设定值	11 修正值
-40 -40.0 10	10.00	60 60.00	110 110.0	-40	-40.0] 10	10.00	60	60.00	110	110.0
-30 -30. 0 20	20.00	70 70.00	120 120. 0	-30	-30. 0	20	20.00	70	70.00	120	120. 0
-20 -20.0 30	30.00	80 80.00	130 130. 0	-20	-20. 0	30	30.00	80	80.00	130	130. 0
-10 -10.0 40	40.00	90 90.00	140 140. 0	-10	-10. 0	40	40.00	90	90.00	140	140.0
0 0.00 50	50.00 1	100 100.0	150 150. 0	0	0.00	50	50.00	100	100.0	150	150. 0
恢复默认	同步到定	定点	保存	恢复	默认					伢	存

图 4.7 温度线性修正界面

图 4.8 温度定点修正界面

系统提供了 20 个温度点,当测量温度与真实温度有误差时,修改修正值,以修正当前 测量温度值。

修正原理:用户需自备一根能作为参考标准的温度传感器。当控温达到稳定后,在设定 值对应的修正值的原基础上,加上干体炉的测量温度值与标准传感器测量的真实温度的差 值。举例说明,干体炉设定温度 50℃,控温达到稳定时干体炉主界面上测量温度显示为 49.97℃,标准传感器测量的真实温度为 50.03℃,那么两者的差值为-0.06℃。在修正界面下 设定值 50℃对应的蓝色方框内的修正值当前为 50.00℃,修改成 49.94℃,即将 50 50.00 改成 50 49.94 ,点击保存。返回主界面,等待控温再次稳定,若测量温度精确度仍不 理想,可在修正值 49.94℃的基础上用同样的方法再次修复,直至温度点 50℃修正完成。

恢复默认:增加了将温度修正值恢复至出厂值状态与恢复至未校准状态的选项,如图 4.9 所示。若用户误操作修改了温度修正值,可自行将温度修正值恢复默认至出厂值。若点 按"恢复默认"无效果,修改任意一个温度修正值后再次尝试即可。

图 4.9 恢复默认界面

注意:设置完成后按"保存"按键才会保存设置值,否则视为放弃修改。

4.7 文件记录

文件记录列表: 文件目录。共计可以保存 10 个数据文件。在文件列表界面下,显示每 一个文件的文件名、最后一次修改文件的时间与日期。若文件为空,则不显示任何内容。如 图 4.10 所示。

图 4.10 文件记录列表界面

文件记录:用于给用户提供手动记录与保存数据的功能,如图 4.11 所示。

图 4.11 文件记录界面

- 文件名:最多16个英文字符(1个中文字符相当于2个英文字符),将同时显示在 文件记录列表上。必须输入,否则保存无效;
- ②. 删除与保存: 删除或保存该文件内的所有输入信息;
- ③. 左右翻页:一个文件内最多可保存6支传感器的信息,向右翻页后将显示传感器4 传感器5、传感器6;
- ④. 上下翻页: 一支传感器最多可保存 10 个设置温度和测量数据;
- ⑤. 传感器测量数据: 点按对应区域输入;
- ⑥. 传感器设置温度: 点按对应区域输入;
- ⑦. 传感器属性编辑:点按该区域进入传感器属性编辑界面,包括编号、分度号、数据 单位的编辑,如图 4.12 所示。

- ①. 编号: 最多4个英文字符, 点按对应区域输入;
- ②. 分度号: 最多8个英文字符, 点按对应区域输入;
- ③. 数据单位:包括℃、°F、Ω、mV 4种单位,可供选择;
- ④. 删除:清除当前该传感器属性中的所有信息。

4.8 控温数据

控温文件列表:文件目录。共计可以保存 50 个数据文件。在控温文件列表界面下,显示每一个文件的文件名、生成文件时的日期与时间。若文件为空,则不显示任何内容。如图 4.13 所示。

图 4.13 控温文件列表界面

1)存储功能:开启存储功能,在每一次执行加热(或制冷)操作时,系统均会弹出控温数据是否存储对话框。若开启存储,控温数据会以3秒/次的频率进行存储;关闭存储功能,则不会给出相应提示(正在启动控温过程中无法更改配置);

2) 上下翻页: 可以查看前 5 个或后 5 个控温数据文件;

3) **全部删除:** 点按"全部删除"按键,可一次性全部删除 50 个控温数据文件,耗时较长, 请耐心等待。

控温文件:显示每一个控温数据文件的文件名、文件序号、生成文件时的日期与时间、设置 温度、温度个数、总控温时间与控温达到稳定时的消耗时间。若文件为空,则不显示任何内 容。如图 4.14 所示。

图 4.14 控温文件界面

 1)删除文件:删除当前的一个文件,其余文件不受影响。文件为空时点按无反应;
 2)查看曲线:将该控温数据文件内的控温数据以曲线图形式显示,即历史曲线,如图 4.15 所示。文件为空时点按无反应;

$\langle \rangle$	调查上应问		>>> 0	1号文件
160 140	温度只区间] (800		ŧ
120 - 100 - 80 - 60 -				+
40 - 20 - 0 -				0.5小时
-40		稳定	2点(0.000)
	除文件	退出曲线	\$TEP:	到串口

图 4.15 查看曲线界面

在该界面下,一个曲线图画面最多能显示 600 个控温数据,按照控温数据 3 秒/次的存储频率,一个曲线图画面耗时为 0.5 小时。后面的控温数据可通过右翻页查看。

系统判定控温达到稳定时测量温度的瞬时值在图中以绿色标出显示。

3) **打印到串口**:将该控温数据文件内的所有信息发送至串口工具上,需连接干体炉的 USB 通讯接口到 PC 端,效果如图 4.16 所示。文件为空时点按无反应。

图 4.16 串口工具效果图

4.9 时间设置

>>> 时间设置 < 2020 59 2021 01 01 00 12 00 2022 02 01 01 保存

时间设置:用于修改时间与日期,在主界面右上角实时刷新,掉电不丢失,如图 4.17 所示。

图 4.17 时间设置界面

通过对应项目的"递增"与"递减"按键,对时间参数进行修改。

注意:设置完成后按"保存"按键才会保存设置值,否则视为放弃修改。

4.10 系统信息

系统信息:显示干体炉基本信息,包括序列号、软件版本号、文件功能、通讯功能,如图 4.18 所示。

$\langle \rangle$	>>> 系统信息
序列号	08552021001
版本号	V1.00.1650.003
文件功能	打开
通讯功能	打开
系统升级	升级

图 4.18 系统信息界面

5 技术指标

说明:本技术指标需在23±5℃环境下,产品达到设定温度后稳定10分钟下有效:

- 温度单位:℃或℃
- 型号规格: -20℃~150℃

- 温度仪表精度: ±0.1%FS
- 显示分辨率: 0.01℃和 0.001℃可选 最大显示位数 6 位
- 升温速度: 25℃至 50℃6 分钟; 50℃至 100℃15 分钟; 100℃到 150℃20 分钟;
- 降温速度: 25℃至 0℃15 分钟; 0℃至-20℃15 分钟;
 -20℃至-30℃22 分钟;
- 温度稳定性: ≤±0.02℃/15分钟
- 插入深度: 165mm
- 可插入传感器数量及孔径:标准配置为4个孔,分别是∮6、∮8、∮10、∮12mm

6 一般技术规格

- 尺寸: 300mm×190mm×330mm(长×宽×高)
- 重量: 13kg;
- 工作电压: 220V.AC±10%,可选配 110V.AC±10%, 45-65Hz;
- 功率: 300W。

7 保养与维护

1.一般的保养和维修

1)使用1年左右,应对仪表重新进行校正,以保证仪表的指标符合要求。

2.更换保险丝管

保险丝管安装于电源插座开关下方。

保险丝管规格:

10AL250V 快熔式保险丝 Φ5x20mm

操作步骤:

- 1) 把电源关闭, 拔掉电源线插头。
- 2) 找到保险丝所在位置,根据器件上面提示取出已被烧断的保险丝管。
- 3) 更换好新的保险丝管,再重新装回去。